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coefficients in the 1,3 positions which makes the thienothio-
phenes good donor molecules for dienophilic reagents. 

To summarize, the thienothiophenes are "aromatic" com­
pounds like thiophene. Their high reactivity with respect to 
1,3-additions follows from the HOMO energy and structure, 
as revealed by photoelectron spectroscopy. Thus, the hitherto 
unavailability of 1 appears to be a consequence of its high re­
activity and not of its instability and 2 may be isolable because 
of a somewhat damped reactivity due to steric interference by 
the 1,3-phenyl substituents. Strictly speaking, these compounds 
are "nonclassical" only from the point of view of formal defi­
nition and representation. 
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served.8 With substitution on the ring, the degenerate e2U(7r*) 
orbital splits into bi(ir*) and a2(ir*) orbitals.9 This splitting 

O7(V) b, (ir*) 

is particularly evident in the transmission spectrum of phenol. 
Similar results were found in aniline and anisole and the 
spectra are not shown. As shown below, the a2(ir*) orbital has 
nodes on the 1 and 4 carbons, while the bi(7r*) orbital does not 
possess nodes on any of the carbons. 

The -NH2, -OH, and -OCH3 groups have small positive 
inductive effects10 (which stabilize both A2 and Bi anion 
states) and large negative resonance effects10 (which desta­
bilize the Bi state). We expect, therefore, that the ground state 
anions of aniline, phenol, and anisole will be slightly more 
stable than the ground state of CgHg- and will be of A2 sym­
metry. On the other hand, the second anion states denoted by 
A2Bi should lie well above the CgHg- ground state. The 
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Figure 1. The derivative of the transmitted current as a function of electron 
impact energy in benzene, phenol, fluoro-, and chlorobenzene. 

electron transmission spectra illustrate nicely the role of in­
ductive and resonance contributions to anion stabilities. While 
the first EA of benzene is —1.15 eV, the first two EA's are 
-1.13 and -1.77 eV for aniline, -1.01 and —1.81 eV for 
phenol, and -1.00 and -1.63 eV for anisole. The X 2A2 states 
of C6H5OH- and C6H5OCH3

- are lower than that of 
C6H5NH2

-, corresponding to the greater inductive effects of 
the -OH and -OCH3 groups relative to the -NH2 group. The 
A 2B] state OfC6H5NH2

- lies above those OfC6H5OH- and 
C6H5OCH3

-, consistent with the greater resonance contri­
bution of the -NH2 group. These symmetry assignments were 
confirmed for phenol by means of a SCF-MO calculation.11 

The ground states of the temporary anions exhibit well-defined 
vibrational structure,12 thus allowing an accurate determi­
nation of the adiabatic EA's of each of the gases.'3 The excited 
states of the anions are apparently shorter lived and do not 
display measurable vibrational structure. We characterize the 
energy of these states by that of the midpoint of the structure. 
This energy corresponds to the negative of the vertical EA. 

Although the fluoro, chloro, and bromo substituents also 
possess positive inductive and negative resonance effects,10 

induction is considerably more important for the halogens than 
for -NH2, -OH, and -OCH3. We expect, therefore, that the 
ground-state anions of C6H5F, C6H5Cl, and C6H5Br will be 
significantly stabilized relative to the C6H6

- ground state. This 
is indeed the case. The first EA's for these three halobenzenes 
are -0.89, -0.75, and -0.70 eV, respectively. The latter two 
values are in good agreement with those reported by Nenner 
and Schulz3c using ETS.14 The energies of the second anion 
states of the halobenzenes cannot be determined accurately 
from our transmission data. The lifetimes of these states appear 
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Figure 2. Correlations between the EA's and IP's of monosubstituted 
benzenes. 

to be substantially shorter than those of the ground states and 
the associated spread in energy is sufficiently large to mask the 
splittings, which we anticipate to be ~0.2-0.4 eV. A portion 
of the structure ascribed to a second anion state appears most 
visibly in C6H5F. With C6H5Cl this feature appears to broaden 
and disappears completely in C6H5Br. The spectra also suggest 
a progressive shortening in lifetime of the ground-state anions 
along the substituent sequence F, Cl, and Br. 

Dissociative attachment under electron impact according 
to the reaction 

C6H5X + e - — C6H5X - — C6H5 + X -

is energetically possible for C6H5Cl and C6H5Br throughout 
the range of electron energies employed in our investigation.15 

Experimental studies16 have been performed which show that 
the Cl - and Br- production is maximum near electron energies 
of 0.86 and 0.84 eV, respectively. We suggest that dissociative 
attachment will proceed primarily from the A 2Bi states rather 
than the X 2A2 states, since the bi (IT*) orbital is antibonding 
between the halogen and the ring. It is important to note that 
the short lifetimes (1O-15 s) OfC6H5Cl- and C6H5Br- are due 
to electron autodetachment and not to dissociative attachment, 
which takes place on a longer time scale. 

To summarize our results, in Table I we list the electron 
affinities of the molecules studied in this paper. For compar­
ative purposes we have listed our earlier results for toluene.1 

We have also included the third electron affinities associated 
with capture of an electron into the bi(7r3*) orbitals of the 

Table I. Electron Affinities (eV) of Benzene and Monosubstituted Benzenes 

Compound 

Benzene 
Fluorobenzene 
Chlorobenzene 
Bromobenzene 
Phenol 
Anisole 
Aniline 
Toluenec 

First EA(TTi*)0 

-1.15 
-0.89 
-0.75 
-0.70 
-1.01 
-1.09 
-1.13 
-1.11 

Second EA (TT2*)* Third EA (TT3*)* 

-1.15 (degenerate) 
Not observed 
Not observed 
Not observed 

-1.73 
-1.72 
-1.85 

No splitting 

-4.85 
-4.77 
-4.50 
-4.42 
-4.92 
-4.92 
-5.07 
-4.88 

" Determined from the zeroth vibrational level of the ion. The error in these values is less than ±0.05 eV. * Vibrational structure is not observed 
in the second and third negative ion states. The energies are determined from the center of the structure in the cross section. The error in these 
values is estimated to be ±0.08 eV. c Reference 1. 
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substituted benzenes and the b2g(7T3*) orbital of benzene.3b For 
each of the molecules studied, the third electron affinity lies 
between —4.45 and —5.12 eV. The relative positions are in 
accord with our earlier discussion of inductive and resonance 
effects. 

To provide an overview of the effects of substitution on the 
unfilled as well as filled orbitals, we present in Figure 2 a cor­
relation diagram of the anion and cation states. For the latter, 
the splitting of the eig(7r) orbital of benzene into the bi(ir) and 
a2(ir) orbitals has been the subject of several investigations17 

employing photoelectron spectroscopy. We have not indicated 
the positions of the third x ionization potentials since, for some 
of the substituted benzenes, the assignment is still open to 
question. 

These studies indicate that ETS provides a complement to 
photoelectron spectroscopy in yielding information about the 
shifts of levels due to substituent effects. Although the shifts 
in anion energies can be interpreted in terms of the same con­
cepts invoked for cation states, the variations in anion lifetime 
are poorly understood and warrant further investigation. 
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ability of developing general approaches that will allow dis­
cussion of the various possible intermolecular interactions is 
self-evident. 

In spite of the obvious need for such capabilities, previous 
approaches to the problem1-23 have typically required serious 
approximations to be made, either in the model itself or in the 
techniques used to evaluate the model, so that computational 
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